

energie atomique • energies alternatives

Highly nonlinear Ablative Rayleigh-Taylor Instability on NIF

Presentation to
NIF User Group Meeting
February 13th, 2012

Alexis Casner and Abl RT team
CEA, DAM, DIF, F-91297 Arpajon, FRANCE

Ablative Rayleigh-Taylor Instability (Abl RT) Collaboration

- PI name and institution: A. Casner (CEA DAM DIF, France)
- CEA Collaborators
- L. Masse (ablative RTI), O. Poujade (RTI turbulence), D. Galmiche,
- S. Liberatore (hohlraum designers), B. Delorme (PhD student)
- P. Loiseau (LPI), F. Girard, L. Jacquet (backlighters), L. Videau (shrapnel)
- LLNL Collaborators
- V. Smalyuk (co-PI), H.S. Park, D. Martinez, D. Bradley, B. Remington
- J. Kane (Eagle nebula proposal designer)
- AWE Collaborator: A. Moore (RadT platform expert)
- I. Igumenshev in charge of Direct Drive design (Laboratory of Laser Energetics, Rochester)
- Prof. P. Clavin (Institut de Recherche Phénomènes Hors équilibre, Aix-Marseille University)
- M. Olazabal-Loumé (CELIA, University of Bordeaux)
- S. Abarzhi (U. Chicago)
- Prof. S. Sarkar (Department of Mechanical and Aerospace Enginneering, UCSD) Casner Abl RT—NIF User group meeting, February 13th, 2012

Ablative RT proposal objectives

- The effect of ablation on RTI growth rate depends on the irradiating scheme: direct versus indirect drive.
- Multimode ablative Rayleigh Taylor Instability is not well understood, as well as turbulent front hydrodynamics.

- NIF will accelerate targets over much larger distances (x6) and over longer time periods than ever achieved.
- In one shot, growth of RT modulations can be measured from the weakly nonlinear stage near nonlinear saturation levels to the highly nonlinear bubble-competition, bubble-merger regimes and perhaps into a turbulent-like regime.
- The result of the first DD planar RT shot on NIF will lead the way for academic IFE studies (Polar Direct Drive, Shock Ignition).
- We can perform these experiments right now, without any new diagnostics.
- We are developping a gas-filled hydrodynamics platform usefull for future experiments (Eagle nebula,)

ARTI Proposal goals: Study ablative Rayleigh-Taylor in deeply non-linear regime

- Non-linear mode coupling
- Ablative destabilization
- Bubble-competition and merger
- Transition to turbulence and influence of initial conditions
- Address effect of ablation on terminal bubble velocity

Broadband modulations become larger as they grow nonlinearly

• 50- μm thick CH foils were driven with 12-ns-square laser pulses at 5 \times 10 13 W/cm²

size \sim 30 μ m

• Betti–Goncharov growth rate $\gamma = 0.94 \sqrt{\frac{kg}{1 + kL_m}} - 1.5 V_a k$

V. A. Smalyuk et al., Phys. Rev. Lett. 95, 215001 (2005).

V. A. Smalyuk et al., Phys. Plasmas. 13, 056312 (2006).

Ablative RT: Two platforms isolate ablative stabilization effects

Indirect Drive Abl RT platform is similar to Radiation Transport platform

Indirect Drive Abl RT Targets are similar to Radiation Transport Targets

This planar rad-hydro platform can be applied across a wide variety of science experiments

These experiments can utilize a modified planar-radiation hydrodynamics platform

Ablative RT platform: compatible with 5 NIF current experimental configurations (see W. Hsing talk)

Drive Pulse 20-ns long, shaped

Total energy 256 kJ

Experimental layout, Target chamber top view

Diag	Location	Priority	Type	Calib
GXD-1	0-0	1	2	Pre-Shot
DISC-1	90,78	1	3	Pre-Shot
Dante 1	143,274	1	3	Pre-Shot
SXI, T/B	Fixed	3,2	3	Pre-Shot
FABS.NBI/FFLEX	Fixed	2-3	3	Pre-shot
GXD-2	90-315	2	2	Pre-Shot

Laser Parameter	Drive Value	Face-on BL Value	Sidelighter Value	Tolerance
1) Energy range per beam	4 kJ	5 kJ	5 kJ	5%
2) Pulse length	20 ns	10 ns	10 ns	± 100 ps
3) Pulse shape	Shaped	10-ns square	10-ns square	Will further define variation on BL pulse
4) Power Balance	nominal	nominal	nominal	
5) SSD bandwidth	90 GHz	0-90 GHz	0-90 GHz	anything is acceptable
6) CPP design	Nominal CPPs	Nominal CPPs	Nominal CPPs	
7) Pulse delays	0.0 ns	6-10 ns	6-10 ns	±65 ps RMS
8) 2-color wavelength offset	No offset	No offset	No offset	
9) Beam pointing jitter	100 µm RMS	100 μm RMS	100 µm RMS	
10) Beam focus	Best focus	Best focus	Best focus	Spot size ± 0.05 mm
11) Post Pulse E upper limit				
12) Beam pointing location	TCC	x=0, y=0,z=-1.5cm	x=-1.06 cm, y=1.06 cm z=0.4337 cm	± 100 μm RMS

NIF Laser Power

Drive Pulse
Shaped pulse
0.5 TW per beam
16 quads
(Q41B, Q46B, Q36B, Q34B,
Q26B, Q23B, Q13B, Q11B,
Q43B, Q45B,Q35B,Q32B,
Q25B,Q22B,Q14B,Q12B)

Total energy 256 kJ

Backlighter Pulse
10-ns square
0.5 TW per beam
4 quads for backlighter
(Q11T, Q21T, Q31T, Q34T)
Total energy 80 kJ
Intensity up to 8e14 W/cm^2

2 quads for side-lighter (Q16T Q34T) Total energy 40 kJ Intensity 4.8e14 W/cm^2

Pulse shape, drive and acceleration

Targets are accelerated over 6x larger distance than on OMEGA

Ablative RT initial measurements use 2D single mode growth to establish ablation velocity, acceleration

- a) Predicted growth factors as a function of time for a single mode λ = 50 µm wavelength perturbation in a 160 µm thick doped foil for three different initial p-t-v amplitudes, 0.1, 0.25 and 1 µm.
- b) Corresponding side-on images of RT spikes at 20 ns.

Extend measurements on indirect platform to multimode perturbations

Probe weakly nonlinear stage near nonlinear saturation levels to the highly nonlinear bubble-competition, bubble-merger regimes, turbulent-like regime

20 μ m< λ < 1000 μ m white noise with σ_{rms} =1 μ m

Physics packages could been made (CEA target lab)

Side-on, post-processed images illustrating the bubble-merger regime reached in ID experiments with initial 2D multimode perturbations with initial rms amplitude of 1 μ m.

At least one bubble generation in ID from 14 to 18 ns

Model, boundaries integral method

1000 μm

2D FCI2 simulations multimode pattern

Comparison of ID and DD X-ray radiography (Face –on postprocessed images)

Hohlraum closure has to be MEASURED

Bradley, PoP 2007

Masse, Huser, Casner

Phys. Plasmas. <u>18</u>, 012706 (2011). Phys. Rev. E <u>83</u>, 055401(R) (2011).

Whatever hydrocode predicts as a CLOS has to be demonstrated experimentally

Abl RT: Backlighter Performance Qualification shot (Tier 1 FY12) followed by Hohlraum PQ shot (Tier 2)

Face-on Copper and Side-on Scandium backlighters: FCI2 calculations in the upper limit intensity case at 8.10¹⁴ W.cm⁻²

Vanadium Face-on BL

one-side irradiation 10 ns square pulse, 0.2 ns rise to Pm, Pm = 8 TW, 0.2 ns fall to 0 focal spot : 1186 μ m × 1067 μ m SG 4

C.E ~ 1 %

Scandium SL

two-side irradiation on each side: a 6 ns square pulse, 0.2 ns rise to Pm, Pm = 8 TW, 0.2 ns fall to 0

focal spot : 1186 μ m × 1067 μ m SG 4

 $C.E \sim 2.5 \%$

Power emitted in the foil normal axis and

in the 4-5.5 keV range

Power emitted in 4π and in the 4-5.5 keV range

Ablative RT: Two platforms isolate ablative stabilization effects

Drive Pulse 20-ns square

Total energy 184 kJ Intensity 4.5e14 W/cm^2

Experimental layout, Target chamber top view

Diag	Location	Priority	Type	Calib
GXD-1	0-0	1	2	Pre-Shot
DISC-1	90,315	1	3	Pre-Shot
Dante 1	143,274	1	3	Pre-Shot
SXI, T/B	Fixed	3,2	3	Pre-Shot
FABS.NBI/FFLEX	Fixed	2-3	3	Pre-shot
GXD-2	90-78	2	2	Pre-Shot

Direct drive laser Requirements

Laser Parameter	Drive Value	Face-on BL Value	Sidelighter Value	Tolerance
1) Energy range per beam	5.75 kJ	5 kJ	5 kJ	5%
2) Pulse length	20 ns	10 ns	10 ns	± 100 ps
3) Pulse shape	Square	10-ns square	10-ns square	Will further define variation on BL pulse
4) Power Balance	nominal	nominal	nominal	
5) SSD bandwidth	90 GHz	0-90 GHz	0-90 GHz	anything is acceptable
6) CPP design	Nominal CPPs	Nominal CPPs	Nominal CPPs	
7) Pulse delays	0.0 ns	6-10 ns	6-10 ns	±65 ps RMS
8) 2-color wavelength offset	No offset	No offset	No offset	
9) Beam pointing jitter	100 µm RMS	100 μm RMS	100 µm RMS	
10) Beam focus	Best focus	Best focus	Best focus	Spot size ± 0.05 mm
11) Post Pulse E upper limit				
12) Beam pointing location	x=0, y=0 z=0.1 cm	x=0, y=0,z=-1.5cm	x=-1.06 cm, y=1.06 cm z=0.0437 cm	± 100 μm RMS

NIF Laser Power

Drive Pulse 20-ns square 0.2875 TW per beam 8 quads (Q15B, Q16B, Q21B, Q24B, Q31B, Q33B, Q42B, Q44B)

Total energy 184 kJ Intensity 4.5e14 W/cm^2

Backlighter Pulse
10-ns square
0.5 TW per beam
Up to 4 quads for backlighter
(Q11T, Q21T, Q31T, Q34T)
Total energy 80 kJ
Up to intensity 8e14 W/cm²

4 quads for side-lighter (Q46T, Q46B, Q23T, Q23B) Total energy 40 kJ Intensity 4.8e14 W/cm²

300-µm thick CH foil is accelerated from 6.5 ns till ~20 ns by 20-ns square pulse

Ablative RT, direct-drive platform, beam offset = 1.0 mm

Offset 1.0 mm

Beams are focused 1 mm behind initial foil position to minimize beam divergence effects and maintain the acceleration.

At least 3 more bubble generation than on OMEGA

- Growth rates are similar to OMEGA while target displacement is increased up to 10 times on NIF
- As bubble amplitude scale as gt² we expect 300 µm bubble which is 3 more generation of bubbles at 15 ns

• Shaping the drive will allow to tailor easily the initial conditions (cut-off, length scale)

Lateral flow suppresses the perturbation growth at later time

Single mode simulations for λ =50 and 200 μ m

The growth of 50 µm perturbations is suppressed after ~15ns due to a lateral flow.

The 200um perturbations saturate at ~20ns, probably, due to the same lateral flow.

LBS OMEGA experiments allow us to study the Richtmyer-Meshkov seeding phase

Thicker targets allow the RM instability to grow to larger amplitudes at later times

Modulation areal density compared at the same distance traveled

Azimuthal average of Fourier spectrum

More details : see B. Delorme, D. Martinez posters tomorrow

Ablative RT proposal objectives

- The effect of ablation on RTI growth rate depends on the irradiating scheme: direct versus indirect drive.
- Multimode ablative Rayleigh Taylor Instability is not well understood, as well as turbulent front hydrodynamics.

- NIF will accelerate targets over much larger distances (x6) and over longer time periods than ever achieved.
- In one shot, growth of RT modulations can be measured from the weakly nonlinear stage near nonlinear saturation levels to the highly nonlinear bubble-competition, bubble-merger regimes and perhaps into a turbulent-like regime.
- The result of the first DD planar RT shot on NIF will lead the way for academic IFE studies (Polar Direct Drive, Shock Ignition).
- We can perform these experiments right now, without any new diagnostics.
- We are developping a gas-filled hydrodynamics platform usefull for future experiments (Eagle nebula,)

2.0

Real-space bubble competition models describe Rayleigh-Taylor evolution more naturally

Real-Space Analysis

• The modulation $\sigma_{\rm rms}$ grows as $\alpha_{\sigma} {\rm gt^2}$, with $\alpha_{\sigma} = 0.027 \pm 0.003$.

Measured distributions were fit with a normal distribution function.

$$f\left(\frac{\lambda}{\langle\lambda\rangle}\right) = \frac{1}{\sqrt{2\pi} \ C_{\lambda}} \ \exp\left[-\frac{\left(\frac{\lambda}{\langle\lambda\rangle} - 1\right)^{2}}{\sqrt{2} \ C_{\lambda}^{2}}\right], \qquad C_{\lambda} = 0.24 \pm 0.01.$$

O. Sadot et al., Phys. Rev. Lett. 95, 265001 (2005).

V. A. Smalyuk et al., Phys. Plasmas. 13, 056312 (2006).

6.4x configuration for GXD-1 in DIM 0-0 Insensitive to 500 µm mispointing

20-μm diam pinholes in 75-μm thick Ta substrate at 10 cm from tcc
Two standard 500 μm thick Ta collimators (diameter 50 μm)
GXD-1 at 74 cm from tcc
Max Filtration: Be – 500 μm total, or 100 μm polyimide

20-µm pinhole resolution is 20 µm or better at x-ray energies from 3 to 8 keV, resolution of the GXD is 50 µm.

Point spread function at 3keV

Modulation transfer function at 3keV

Modulation transfer function of GXD

Point spread function at 8keV

Modulation transfer function at 8keV

